
CS144: Introduction to Computer Networking Fall 2019

Lab 4: the summit (TCP in full)

Due: Wednesday, Nov. 6, 5 p.m.
Lab sessions: Tuesday, Oct. 29 & Nov. 5, 7:30–10 p.m. in STLC114

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

In Lab 0, you implemented the abstraction of a flow-controlled byte stream (ByteStream).

In Labs 1, 2, and 3, you implemented tools that translate between that abstraction and the
one the Internet provides: unreliable datagrams (IP or UDP).

Now, you are nearing the summit: a working TCPConnection that combines your TCPSender
and TCPReceiver and can talk to other implementations at a speed of at least 100 Mbit/s.
Figure 1 shows the overall design.

2 Getting started

Your implementation of a TCPConnection will use the same Sponge library that you used in
Labs 0–3, with additional classes and tests. We’re giving you support code that reads and
writes TCP segments into the payloads of user datagrams (“TCP-over-UDP”) and Internet
datagrams (“TCP/IP”). We’re also giving you a class (CS144TCPSocket) that wraps your
TCPConnection and makes it behave like a normal stream socket, just like the TCPSocket

you used to implement webget back in Lab 0. By the end of this lab, you will slightly modify
your webget to use your TCP implementation. To get started:

1. Make sure you have committed all your solutions to Lab 3. Please don’t modify any

CS144: Introduction to Computer Networking Fall 2019

TCPConnection

TCPSender

CS144TCPSocket

TCPReceiver

StreamReassembler

ByteStream

(“inbound”)

ByteStream

(“outbound”)

writes
(to the socket)

reads
(from the socket)

TCPSegment
(seqno, SYN, payload, FIN)

(ackno,
 window_size)⊕

IPv4Datagram
(with TCPSegment as payload)

TCPSegment
(+ add port numbers) to Internet

from Internet IPv4Datagram
(with TCPSegment as payload) TCPSegment

segment_received(TCPSegment)

ack_received(ackno, window_size)

segment_received(TCPSegment)

Figure 1: The arrangement of modules and dataflow in your TCP implementation.

CS144: Introduction to Computer Networking Fall 2019

files outside the top level of the libsponge directory, or webget.cc. You may have
trouble merging the Lab 4 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch to retrieve the
most recent version of the lab assignments.

3. Download the starter code for Lab 3 by running git merge origin/lab4-startercode .

4. Within your build directory, compile the source code: make (you can run, e.g.,
make -j4 to use four processors when compiling).

5. Outside the build directory, open and start editing the writeups/lab4.md file. This
is the template for your lab writeup and will be included in your submission.

3 Lab 4: The TCP connection

This week, you’ll finish building a working TCP implementation that’s compatible with
literally billions of computers and mobile devices on the Internet. You’ve already done most
of the work to get there: you’ve implemented the sender and the receiver. Your job this
week is to “wire them up” together into one object (a TCPConnection) and handle some
housekeeping tasks that are global to the connection.

Recall: TCP reliably conveys a pair of flow-controlled byte streams, one in each direction.
Two parties participate in the TCP connection, and each party acts as both “sender” (of its
own outbound byte-stream) and “receiver” (of an inbound byte-stream) at the same time:

TCPConnection TCPConnection

TCPSender

TCPReceiver TCPSender

TCPReceiver

Ⓐ Ⓑ

“Hello there!”

“General Kenobi!”

The two parties (“A” and “B” in the above diagram) are called the “endpoints” of the
connection, or the “peers.” Your TCPConnection acts as one of the peers. It’s responsible for
receiving and sending segments, making sure the sender and receiver are informed about and
have a chance to contribute to the fields they care about for incoming and outgoing segments.

Receiving segments. The TCPConnection will receive TCPSegments from the Internet, and

• if the ack flag is set, tell the TCPSender about the fields it cares about on incoming
segments: ackno and window size, and

• give the segment to the TCPReceiver so it can inspect the fields it cares about on
incoming segments: seqno, syn , payload, and fin .

CS144: Introduction to Computer Networking Fall 2019

Sending segments. The TCPConnection will send TCPSegments over the Internet:

• whenever the TCPSender pushes a segment onto its outgoing queue, having set the
fields it’s responsible for on outgoing segments: (seqno, syn , payload, and fin).

• Before sending the segment, the TCPConnection will ask the TCPReceiver for the
fields it’s responsible for on outgoing segments: ackno and window size. If there is an
ackno,1 it will set the ack flag and the fields in the TCPSegment.

As a result, the overall structure of each TCPSegment looks like this, with “sender” and
“receiver” fields shown in different colors:

Source Port Number (sport) Destination Port Number (dport)

Data Offset
(doff)

Checksum (cksum) Urgent Pointer (uptr)
Options / Padding

UR
G

AC
K

PS
H

RS
T Window Size (win)

Payload

SY
N

FI
N

Acknowledgement Number (ackno)
Sequence Number (seqno)

TCPSegment

The full interface for the TCPConnection is in the class documentation. Please take some
time to read through this. Much of your implementation will involve “wiring up” the public
API of the TCPConnection to the appropriate routines in the TCPSender and TCPReceiver.
As much as possible, you want to defer any heavy lifting to the sender and receiver that
you’ve already implemented. That said, not everything will be that simple, and there are
some subtleties that involve the “global” behavior of the overall connection. The hardest part
will be deciding when to fully terminate a TCPConnection and declare it no longer “active.”

What follows are some FAQs and details of edge cases that you’ll need to handle.

4 FAQs and special cases

• How much code are you expecting?

Overall, we expect the implementation (in tcp connection.cc) will require about
100–150 lines of code in total. When you’re done, the test suite will extensively test
your interoperability with your own implementation as well as the Linux kernel’s
implementation of TCP.

1Remember that TCPReceiver::ackno() returns an optional value.

https://cs144.github.io/doc/lab4/class_t_c_p_connection.html

CS144: Introduction to Computer Networking Fall 2019

• How should I get started?

Probably the best way to start is by wiring up some of the “ordinary” methods to
the appropriate calls in TCPSender and TCPReceiver. This may include stuff like
remaining outbound capacity(), bytes in flight(), and unassembled bytes().

Then you may choose to implement the “writer” methods: connect(), write(),
and end input stream(). Some of these methods may need to do something to the
outbound ByteStream (owned by the TCPSender) and tell the TCPSender about it.

You might choose to start running the test suite (make check) before you have fully
implemented every method; the test failure messages can give you a clue or a guide
about what to tackle next.

• How does the application read from the inbound stream?

TCPConnection::inbound stream() is implemented in the header file already.

• Does the TCPConnection need any fancy data structures or algorithms?

No, it really doesn’t. The heavy lifting is all done by the TCPSender and TCPReceiver

that you’ve already implemented. The work here is really just about wiring everything
up, and dealing with some lingering connection-wide subtleties that can’t easily be
factored in to the sender and receiver.

• How does the TCPConnection actually send a segment?

Similar to the TCPSender—push it on to the segments out queue. As far as your
TCPConnection is concerned, consider it sent as soon as you push it on to this queue.
Soon the owner will come along and pop it (using the public segments out() accessor
method) and really send it.

• How does the TCPConnection learn about the passage of time?

Similar to the TCPSender—the tick() method will be called periodically. Please don’t
use any other way of telling the time—the tick method is your only access to the passage
of time. That keeps things deterministic and testable.

• What does the TCPConnection do if an incoming segment has the rst flag set?

This flag (“reset”) means instant death to the connection. If you receive a segment
with rst , you should set the error flag on the inbound and outbound ByteStreams,
and any subsequent call to TCPConnection::active() should return false.

• When should I send a segment with the rst flag set?

There are two situations where you’ll want to abort the entire connection:

1. If the sender has sent too many consecutive retransmissions without success (more
than TCPConfig::MAX RETX ATTEMPTS, i.e., 8).

2. If the TCPConnection destructor is called while the connection is still active
(active() returns true).

CS144: Introduction to Computer Networking Fall 2019

Sending a segment with rst set has a similar effect to receiving one: the connection is
dead and no longer active(), and both ByteStreams should be set to the error state.

• Wait, but how do I even make a segment that I can set the rst flag on? What’s the
sequence number?

Any outgoing segment needs to have the proper sequence number. You can force the
TCPSender to generate an empty segment with the proper sequence number by calling
its send empty segment() method. Or you can make it fill the window (generating
segments if it has outstanding information to send, e.g. bytes from the stream or
SYN/FIN) by calling its fill window() method.

• What’s the purpose of the ack flag? Isn’t there always an ackno?

Almost every TCPSegment has an ackno, and has the ack flag set. The exceptions
are just at the very beginning of the connection, before the receiver has anything to
acknowledge.

On outgoing segments, you’ll want to set the ackno and the ack flag when-
ever possible. That is, whenever the TCPReceiver’s ackno() method returns a
std::optional<WrappingInt32> that has a value, which you can test with has value().

On incoming segments, you’ll want to look at the ackno only if the ack field is
set. If so, give that ackno (and window size) to the TCPSender.

• On receiving a segment, what should I do if the TCPReceiver complains that the segment
didn’t overlap the window and was unacceptable (segment received() returns false)?

In that situation, the TCPConnection needs to make sure that a segment is sent back to
the peer, giving the current ackno and window size. This can help correct a confused
peer.

• Okay, fine. How about if the TCPConnection received a segment, and the TCPSender

complains that an ackno was invalid (ack received() returns false)?

Same answer!

• How about if the TCPConnection received a segment, and everything was great? Do I
still need to reply?

If the segment occupied any sequence numbers, then you need to make sure it
gets acknowledged—at least one segment needs to be sent back to the peer with an
appropriate sequence number and the new ackno and window size. You might not
need to do anything to force this, because the TCPSender will often decide to send a
new segment in ack received() (because more space has opened up in the window).
But even if the TCPSender doesn’t have more data to send, you need to make sure the
incoming segment gets acknowledged somehow.

• How about if the TCPConnection just acknowledges every segment, even if it doesn’t
occupy any sequence numbers?

Not a great idea! The two peers would end up sending an infinite number of acks
ping-ponging back and forth.

https://en.cppreference.com/w/cpp/utility/optional

CS144: Introduction to Computer Networking Fall 2019

• How do I decipher these “state” names (like “stream started” or “stream ongoing”)?

Check out the libsponge/tcp helpers/tcp state.hh and tcp stateċc files.

• What window size should I send if the TCPReceiver wants to advertise a window size
that’s bigger than will fit in the TCPSegment::header().win field?

Send the biggest value you can. You might find the std::numeric limits class helpful.

• When is the TCP connection finally “done”? When can active() return false?

Please see the next section.

• Where can I read if there are more FAQs after this PDF comes out?

Please check the website (https://cs144.github.io/lab faq.html) and Piazza regularly.

5 The end of a TCP connection: consensus takes work

One important function of the TCPConnection is to decide when the TCP connection is
fully “done.” When this happens, the implementation releases its exclusive claim to a local
port number, stops sending acknowledgments in reply to incoming segments, considers the
connection to be history, and has its active() method return false.

There are two ways a connection can end. In an unclean shutdown, the TCPConnection

either sends or receives a segment with the rst flag set. In this case, the outbound and
inbound ByteStreams should both be in the error state, and active() can return false
immediately.

A clean shutdown is how we get to “done” (active() = false) without an error. This is
more complicated, but it’s a beautiful thing because it ensures as much as possible that each
of the two ByteStreams has been reliably delivered completely to the receiving peer. In the
next section (§§5.1), we give the practical upshot for when a clean shutdown happens, so feel
free to skip ahead if you like.

Cool, you’re still here. Because of the Two Generals Problem, it’s impossible to guarantee
that both peers can achieve a clean shutdown, but TCP gets pretty close. Here’s how. From
the perspective of one peer (one TCPConnection, which we’ll call the “local” peer), there are
four prerequisites to having a clean shutdown in its connection with the “remote” peer:

Prereq #1 The inbound stream has been fully assembled and has ended.

Prereq #2 The outbound stream has been ended by the local application and fully sent (including
the fact that it ended, i.e. a segment with fin) to the remote peer.

Prereq #3 The outbound stream has been fully acknowledged by the remote peer.

Prereq #4 The local TCPConnection is confident that the remote peer can satisfy prerequisite
#3. This is the brain-bending part. There are two alternative ways this can happen:

https://github.com/CS144/sponge/blob/lab4-startercode/libsponge/tcp_helpers/tcp_state.hh
https://github.com/CS144/sponge/blob/lab4-startercode/libsponge/tcp_helpers/tcp_state.cc
https://en.cppreference.com/w/cpp/types/numeric_limits
https://cs144.github.io/lab_faq.html
https://en.wikipedia.org/wiki/Two_Generals%27_Problem

CS144: Introduction to Computer Networking Fall 2019

• Option A: lingering after both streams end. Prerequisites #1 through #3
are true, and the remote peer seems to have gotten the local peer’s acknowledgments
of the entire stream. The local peer doesn’t know this for sure—TCP doesn’t
deliver acks reliably (it doesn’t ack acks). But the local peer is pretty confident
that the remote peer has gotten its acks, because the remote peer doesn’t seem to
be retransmitting anything, and the local peer has waited a while to make sure.

In specific, a connection is done when prereqs #1 through #3 are satisfied
and it has been at least 10 times the initial retransmission timeout
(cfg.rt timeout) since the local peer has received any segments from
the remote peer. This is called “lingering” after both streams finish, to make
sure the remote peer isn’t trying to retransmit anything that we need to acknowl-
edge. It does mean that a TCPConnection needs to stay alive for a while, 2 keeping
an exclusive claim on a local port number and possibly sending acks in response
to incoming segments, even after the TCPSender and TCPReceiver are completely
done with their jobs and both streams have ended.

• Option B: passive close. Prerequisites #1 through #3 are true, and the local
peer is 100% certain that the remote peer can satisfy prerequisite #3. How can
this be, if TCP doesn’t acknowledge acknowledgments? Because the remote peer
was the first one to end its stream.

?Why does this rule work? This is the brain-bender and you don’t need to
read further to complete this lab, but it’s fun to think about and gets to the
deep reasons for the Two Generals Problem and the inherent constraints
on reliability across an unreliable network. The reason this works is that
after receiving and assembling the remote peer’s fin (prerequisite #1), the
local peer sent a segment with a greater sequence number than it had ever
sent before (at the very least, it had to send its own fin segment to satisfy
prerequisite #2), and that segment also had an ackno that acknowledged
the remote peer’s fin bit. The remote peer acknowledged that segment (to
satisfy prerequisite #3), which means that the remote peer must have also
seen the local peer’s ack of the remote peer’s fin . Which guarantees that
the remote peer must be able to satisfy its own prerequisite #3. All this
means the local peer can satisfy prerequisite #4 without having to linger.

Whew! We said it’s a brain-bender. Extra credit in your lab writeup: can
you find a better way of explaining this?

The bottom line is that if the TCPConnection’s inbound stream ends before
the TCPConnection has ever sent a fin segment, then the TCPConnection

doesn’t need to linger after both streams finish.
2In a production TCP implementation, the linger timer (also known as the time-wait timer or twice the

Maximum Segment Lifetime (MSL)) is typically something like 60 or 120 seconds. That can be long time
to keep a port number reserved after a connection is effectively done, especially if you want to start a new
server that binds to the same port number—nobody wants to wait two minutes. The so reuseaddr socket
option essentially makes Linux ignore the reservation and can be handy for debugging or testing.

https://cs144.github.io/doc/lab4/class_socket.html#afc6ed565fddaa9d7ee4904ecc96bb6c0

CS144: Introduction to Computer Networking Fall 2019

5.1 The end of a TCP connection (practical summary)

Practically what all this means is that your TCPConnection has a member variable called
linger after streams finish, exposed to the testing apparatus through the state()

method. The variable starts out true. If the inbound stream ends before the TCPConnection

has reached EOF on its outbound stream, this variable needs to be set to false.

At any point where prerequisites #1 through #3 are satisfied, the connection is “done” (and
active() should return false) if linger after streams finish is false. Otherwise you
need to linger: the connection is only done after enough time (10 × cfg.rt timeout) has
elapsed since the last segment was received.

6 Performance

After you’ve finished your TCP implementation, and after you are passing all of the tests run
by make check , please commit! Then, measure the performance of your system and bring
it up to at least 100 megabits per second.

From the build directory, run ./apps/tcp benchmark . If all goes well, you’ll see output
that looks like this:

user@computer:~/sponge/build$./apps/tcp benchmark

CPU-limited throughput : 1.78 Gbit/s

CPU-limited throughput with reordering: 1.21 Gbit/s

To receive full credit on the lab, your performance needs to be at least “0.10 Gbit/s”
(100 megabits per second) on both lines. You may need to profile your code or reason
about where it is slow, and you may have to improve your implementation of some of the
critical modules (e.g., ByteStream or StreamReassembler) to get to this point.

In your writeup, please report the speed figures you achieved (with and without reordering).

If you would like, you’re welcome to try to optimize your code as much as you want, but
please do not do this at the expense of other parts of CS144, including other parts of this lab.
We won’t give extra points for performance that’s faster than 100 Mbit/s—any improvements
you do beyond this minimum are for your own satisfaction and learning only. If you achieve
an implementation that’s faster than ours3 without changing any public interfaces, we would
love to learn from you about how you did it.

3We ran our reference implementation on a 2011 Intel Core i7-2600K CPU @ 4.40GHz with Ubuntu 19.04,
Linux 5.0.0-31-generic #33-Ubuntu with default mitigations against Meltdown/Spectre/etc., and g++ 8.3.0
with the default compiler flags for a default (“Release”) build. The CPU-limited throughput (first line) was
7.18 Gbit/s, and (second line) 6.84 Gbit/s with reordering.

CS144: Introduction to Computer Networking Fall 2019

7 webget revisited

Time to take a victory lap! Remember your webget.cc that you wrote in Lab 0? It used a
TCP implementation (TCPSocket) provided by the Linux kernel. We’d like you to switch
it to use your own TCP implementation without changing anything else. We think that all
you’ll need to do is:

• Replace #include "socket.hh" with #include "tcp sponge socket.hh" .

• Replace the TCPSocket type with CS144TCPSocket .

• At the end of your get URL() function, add a call to socket.wait until closed() .

?Why am I doing this? Normally the Linux kernel takes care of waiting for
TCP connections to reach “clean shutdown” (and give up their port reservations)
even after user processes have exited. But because your TCP implementation is
all in user space, there’s nothing else to keep track of the connection state except
your program. Adding this call makes the socket wait until your TCPConnection
reports active() = false.

Recompile, and run make check webget to confirm that you’ve gone full-circle: you’ve
written a basic Web fetcher on top of your own complete TCP implementation, and it still
successfully talks to a real webserver. If you have trouble, try running the program manually:
./apps/webget cs144.keithw.org /hasher/xyzzy . You’ll get some debugging output on

the terminal that may be helpful.

8 Development and debugging advice

1. Implement the TCPConnection’s public interface (and any private methods or functions
you’d like) in the file tcp connection.cc. You may add any private members you like
to the TCPConnection class in tcp connection.hh.

2. We are expecting about 100–150 lines of code in total. You won’t need any fancy data
structures or algorithms;

3. You can test your code (after compiling it) with make check . This will run a fairly
comprehensive test suite (159 tests). Many of the tests confirm that your TCP
implementation can transfer files error-free with Linux’s TCP implementation, or with
itself, over various combinations of packet loss and data transfer in each direction.4

4In the test names, “c” means your code is the client (peer that sends the first syn), and “s” means
your code is the server. The letter “u” means it is testing TCP-over-UDP, and “i” is testing TCP-over-IP
(TCP/IP). The letter “n” means it is trying to interoperate with Linux’s TCP implementation. “S” means

CS144: Introduction to Computer Networking Fall 2019

4. Please re-read the section on “using Git” in the Lab 0 document and in the online
FAQs, and remember to keep the code in the Git repository it was distributed in on
the master branch. Make small commits, using good commit messages that identify
what changed and why.

5. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

6. Please also keep to the “Modern C++” style described in the Lab 0 document. The
cppreference website (https://en.cppreference.com) is a great resource, although you
won’t need any sophisticated features of C++ to do these labs. (You may sometimes
need to use the move() function to pass an object that can’t be copied.)

7. If you get a segmentation fault, something is really wrong! We would like you to be
writing in a style where you use safe programming practices to make segfaults extremely
unusual (no malloc(), no new, no pointers, safety checks that throw exceptions where
you are uncertain, etc.). That said, to debug you can configure your build directory
with cmake .. -DCMAKE BUILD TYPE=RelASan to enable the compiler’s “sanitizers”
to detect memory errors and undefined behavior and give you a nice diagnostic about
when they occur. You can also use the valgrind tool. You can also configure with
cmake .. -DCMAKE BUILD TYPE=Debug and use the GNU debugger (gdb). Remember

to use these settings for debugging only—they dramatically slow down both compilation
and execution of your programs. The most reliable/foolproof way to revert to “Release”
mode is just to blow away the build directory and create a new one.

9 Submit

1. In your submission, please only make changes to the .hh and .cc files in the top level
of libsponge. Within these files, please feel free to add private members as necessary,
but please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) git status (to check for un-committed changes—if you have any, commit!)

(c) make (to make sure the code compiles)

your code is sending data; “R” means your code is receiving data, and “D” means data is being sent in both
directions. At the end of a test name, a lowercase “l” means there is packet loss on the receiving (incoming
segment) direction, and uppercase “L” means there is packet loss on the sending (outgoing segment) direction.

https://cs144.github.io/lab_faq.html
https://cs144.github.io/lab_faq.html
https://en.cppreference.com

CS144: Introduction to Computer Networking Fall 2019

(d) make check (to make sure the automated tests pass)

3. Write a report in writeups/lab4.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. Please also fill in the number of hours the assignment took you and any other comments.

5. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

6. Please let the course staff know ASAP of any problems at the Tuesday-evening lab
sessions, or by posting a question on Piazza. Good luck!

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	Lab 4: The TCP connection
	FAQs and special cases
	The end of a TCP connection: consensus takes work
	The end of a TCP connection (practical summary)

	Performance
	webget revisited
	Development and debugging advice
	Submit

