CS144: An Introduction to Computer Networks

Routing: How do packets know the way?

Today: Different approaches (Part 1 of 3)

Videos and Lectures this week

Lectures: Mostly the "why" we do it this way

Videos: Mostly the "what" and the "how"

Today's lecture and discussion:

Different approaches to routing

Before Wednesday, watch three Videos:

Basics, Bellman Ford and Dijkstra

Routers forward packets one at a time.

Routers look at IP addresses, then send packets to a router closer to the destination.

How does a router know where to send a packet next?

Here are three ways

- 1. **Flooding**: Every router sends an arriving packet to every neighbor.
- 2. Source Routing: Source host adds, to every packet, a list of routers to visit along the way.
- 3. **Distributed Algorithm**: Routers talk to each other, then construct forwarding tables using a clever algorithm.

1. Flooding

Routers forward an arriving packet to every interface, except the one through which it arrived

Cons

- Packets can loop forever (need TTL!)
- Inefficient use of the links
- Packets are delivered to everyone

Pros

- Packet reaches destination along shortest path
- Works when we don't know the topology (and gets used!)

2. Source Routing

Source adds a list of routers to every packet

Here are three ways

- 1. Flooding: Every router sends an arriving packet to every neighbor.
- Source Routing: Source host adds, to every packet, a list of routers to visit along the way
- 3. **Distributed Algorithm**: Routers talk to each other, then construct forwarding tables using a clever algorithm.
 - The rest of today's class....

Basic operations of an Internet router

- 1. If the Ethernet DA of the arriving frame belongs to the router, **accept** the frame. Else **drop** it.
- 2. Check the IP version number and length of the datagram.
- 3. Decrement the TTL, update the IP header checksum.
- 4. Check to see if TTL == 0.
- 5. If the IP DA is in the forwarding table, forward to the correct egress port(s) for the next hop.
- 6. Find the Ethernet DA for the next hop router.
- 7. Create a new Ethernet frame and send it.

Routing tables

Example table:

Usually written as 123.66.44/16 i.e. a 16-bit prefix	Rule	Next hop IP address
	IP DA = 127.43.57.99	56.99.32.16
	P DA = 123.66.44.X	22.45.21.126
	IP DA = 76.9.X.X	56.99.32.16

All IP addresses with the same prefix are forwarded to the same next-hop. The lookup matches on the <u>longest matching prefix</u>

Q: Why?

Longest prefix match

Example

Routing lookup: Find the longest matching prefix (aka the most specific route) among all prefixes that match the destination address.

A thought experiment...

The network below consists of 32 routers, each with a unique ID. Packets from <u>any</u> source router should be delivered to destination router 1, exactly once, along the shortest path.

Q: Which hop should each router forward packets to next?

The network below consists of 32 routers, each with a unique ID. Packets from <u>any</u> source router should be delivered to destination router 1, exactly once, along the shortest path.

A: Follow the shortest path spanning tree, rooted at router 1

Why use a spanning tree?

- 1. Includes every node (spanning)
- 2. Loop-free (tree)

Shortest path spanning tree

Observations

Routers work together, to build a spanning tree *for each destination*.

A routing table entry tells the router, for each destination, which hop to send the packet to next, so that the packet follows the spanning tree.

Q: How does a router know what entries to add in its routing table?

Game: Routing Competition

Each team member has a card

Your router ID

The IDs of your neighbors

Find the shortest path from 1 to 25

Observation

It's straightforward when we know the topology

In a real network, the routers don't necessarily know what the network looks like.

This time, I won't show you the network.

But you still need to find the shortest path.

Rules

You may not

- 1. Pass your card to anyone else
- Leave your seat
- 3. Write anything down

You may

- 1. Ask nearby friends (in your team) for advice
- 2. Shout to other participants in your team (anything!)
- 3. Say bad things about Nick

Pink Group

Task

Find the shortest path from Node 1 to Node 40.

When you are done, you must be able to repeat it correctly.

The first group to finish is the champion!!

How did your team solve it?

Bellman-Ford: A distributed algorithm to find the shortest path spanning tree when you don't know the topology.

Find the shortest path spanning tree rooted at router 1

This is the shortest path from router 2 to 1

The shortest path spanning tree rooted at router 1

Observation

When complete, every router has a table entry to reach router 1.

The algorithm can run simultaneously to build a spanning tree (and hence create routing table entries) to reach <u>every</u> router.

Bellman-Ford Algorithm

Questions:

- 1. What is the maximum run time of the algorithm?
- 2. Will the algorithm always converge?
- 3. What happens when routers/links fail?

What if each link has a "cost"?

"Expensive link":

It might be <u>very long</u>. e.g. a link from Europe to USA. Or it might be very busy. e.g. it connects to Google or CNN. Or it may be very slow. e.g. 1Mb/s instead of 100Mb/s.

Find lowest cost path to H

Find lowest cost path to H

Find the lowest cost path

Router 4 tells its neighbors:

"I can reach 2 with a cost of 15"

Solution

The Distributed Bellman-Ford Algorithm

Example: Find min-cost spanning tree to router R

- Assume routers know cost of link to each neighbor.
- Router R_i maintains value of cost C_i to reach R, and the next hop.
- Vector $C=(C_1, C_2,...)$ is the distance vector to R.
- Initially, set <u>C</u> = (∞, ∞, ... ∞)
 - 1. After **T** seconds, R_i sends C_i to its neighbors.
 - 2. If R_i learns of a lower cost path, update C_i. Remember next hop.
 - 3. Repeat.

Bellman-Ford Algorithm

Questions:

- 1. What is the maximum run time of the algorithm?
- 2. Will the algorithm always converge?
- 3. What happens when routers/links fail?